The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles
نویسندگان
چکیده
One of the main challenges for protein redesign is the efficient evaluation of a combinatorial number of candidate structures. The modeling of protein flexibility, typically by using a rotamer library of commonly-observed low-energy side-chain conformations, further increases the complexity of the redesign problem. A dominant algorithm for protein redesign is dead-end elimination (DEE), which prunes the majority of candidate conformations by eliminating rigid rotamers that provably are not part of the global minimum energy conformation (GMEC). The identified GMEC consists of rigid rotamers (i.e., rotamers that have not been energy-minimized) and is thus referred to as the rigid-GMEC. As a postprocessing step, the conformations that survive DEE may be energy-minimized. When energy minimization is performed after pruning with DEE, the combined protein design process becomes heuristic, and is no longer provably accurate: a conformation that is pruned using rigid-rotamer energies may subsequently minimize to a lower energy than the rigid-GMEC. That is, the rigid-GMEC and the conformation with the lowest energy among all energy-minimized conformations (the minimized-GMEC) are likely to be different. While the traditional DEE algorithm succeeds in not pruning rotamers that are part of the rigid-GMEC, it makes no guarantees regarding the identification of the minimized-GMEC. In this paper we derive a novel, provable, and efficient DEE-like algorithm, called minimized-DEE (MinDEE), that guarantees that rotamers belonging to the minimized-GMEC will not be pruned, while still pruning a combinatorial number of conformations. We show that MinDEE is useful not only in identifying the minimized-GMEC, but also as a filter in an ensemble-based scoring and search algorithm for protein redesign that exploits energy-minimized conformations. We compare our results both to our previous computational predictions of protein designs and to biological activity assays of predicted protein mutants. Our provable and efficient minimized-DEE algorithm is applicable in protein redesign, protein-ligand binding prediction, and computer-aided drug design.
منابع مشابه
A Novel Minimized Dead-End Elimination Criterion and Its Application to Protein Redesign in a Hybrid Scoring and Search Algorithm for Computing Partition Functions over Molecular Ensembles
Novel molecular function can be achieved by redesigning an enzyme’s active site so that it will perform its chemical reaction on a novel substrate. One of the main challenges for protein redesign is the efficient evaluation of a combinatorial number of candidate structures. The modeling of protein flexibility, typically by using a rotamer library of commonly-observed low-energy side-chain confo...
متن کاملDesign of Protein-Protein Interactions with a Novel Ensemble-Based Scoring Algorithm
Protein-protein interactions (PPIs) are vital for cell signaling, protein trafficking and localization, gene expression, and many other biological functions. Rational modification of PPI targets provides a mechanism to understand their function and importance. However, PPI systems often have many more degrees of freedom and flexibility than the small-molecule binding sites typically targeted by...
متن کاملImproved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design
MOTIVATION Structure-based protein redesign can help engineer proteins with desired novel function. Improving computational efficiency while still maintaining the accuracy of the design predictions has been a major goal for protein design algorithms. The combinatorial nature of protein design results both from allowing residue mutations and from the incorporation of protein side-chain flexibili...
متن کاملAlgorithm for backrub motions in protein design
MOTIVATION The Backrub is a small but kinematically efficient side-chain-coupled local backbone motion frequently observed in atomic-resolution crystal structures of proteins. A backrub shifts the C(alpha)-C(beta) orientation of a given side-chain by rigid-body dipeptide rotation plus smaller individual rotations of the two peptides, with virtually no change in the rest of the protein. Backrubs...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2008